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I.  Introduction.

This paper describes research into a new estimate for the
number of uniques in a population based on the
information provided by an observed sample.  That
estimate forms the basis  of an estimate for the proportion
of uniques in the sample which are unique in the
population.  The estimate is produced by a fitting
algorithm, and much of the work so far has been directed
toward producing a good fit.  The fitting algorithm is
described in detail and results are presented for 25 samples
from a known population.  While the setting is limited, the
results are encouraging.

II.  Motivation for problem

One approach to formulating the disclosure risk for a set
of data is to measure its diversity, particularly with respect
to the set of variables that one suspects are either
observable or exist in some more public data set.
Statistical agencies are particularly interested in evaluating
disclosure risk since much of the data they publish is
collected under some pledge of confidentiality.
Willenborg and Waal [1996] give a thorough treatment of
evaluating disclosure risk.  

Before exploring the idea of risk on a set of sample data,
lets begin by considering the parent population.  If only
one individual in the population has a particular
combination of values for these variables then the
combination of values, or key, is unique and it is likely that
the identity of the individual may be deduced.  One can
classify all the records of the population by their key.  If a
record is in a class of size one, it is unique, hence at risk of
disclosure.  If it is in a class with two other records, it is
indistinguishable from them with respect to the key and
the associated risk is much lower.  So a count of unique
records is a start in determining the overall risk of the data
set.  For a sample we not only need to observe the
distribution of uniques but also determine what
percentage of the unique records observed in a sample are
also unique in the parent population, since those that are

not unique in the population have lower risk.

III.  Background of problem

A strategy for estimating the proportion of uniques uses
subsampling, mimicking the original sampling fraction.
The number of uniques in the subsample that are unique
in the sample is taken as a proxy for the relation of the
sample uniques to population uniques.  This estimate
works reasonably well when the sampling fraction is large.
Note that this technique has clear limitations, recursive
sampling of any population eventually gives a population
consisting only of uniques, so the action of sampling
alters the uniqueness distribution.

Another estimate [Zayatz 1991], related to the method
presented here, examines the equivalence classes in the
sample.  The equivalence classes of size 1 are the unique
keys.  The estimate calculates the probability that an
equivalence class of a given size in the population will be
represented by an equivalence class of size 1 in the sample
and assumes the equivalence class structure of the
population is the same as the sample's.   The estimate
presented here is similar, except we estimate the
equivalence class structure of the population  by means of
a fitting algorithm.

Finding a good estimate for the number of uniques has
been a subject of research in the disclosure community for
the last 10 years.  For a Bayesian approach see  [Samuels].
A related problem, estimating the total number of classes
has been kicking around for the last 50 years.  For recent
work on this problem see [Haas Stokes]

IV.  Approach

The classification of records by key variables gives one
access to a distribution of particular interest:  the complete
count of classes by size.  That is, we will look at Y =
(Y1,Y2,..., Ym) where 

      xj are individual records and
      xj belong to the same class, {xj},if they have the same

key



      Yi=#{classes {xj} s.t. #{xj}=i}, 

so that Y1 is the count of unique records, Y2 the number of
different keys which each have 2 records in the data set
etc.  We will use YP to denote the distribution of the
population, YE to denote the distribution of our estimate
of the population, and YS to denote the distribution of the
sample.  Note that 3(i*YP

i)=N.

What is the relationship between the distribution of the
population and the sample?  In the example we look at,
based on census data, the sampling fraction is taken to be
1/6.  For simplicity, we will assume Bernoulli sampling.
What is the expected number of unique sample elements?
If a record is unique in the population it will be unique in
the sample, provided it is selected.  That is, we expect 1/6
(p) of the population uniques to wind up in the sample and
provide one component of the uniques observed there.
Consider a pair of records that comprise a class of two.
The probability that they contribute to the class of
uniques in the sample is 2pq, ie one is selected and the
other is not.  Hence the expected contribution from all of
the classes of size 2 is 2pq*YP

2.  So the expected number
of uniques in the sample is 

          p*YP
1+2pq*YP

2+3pq2*YP
3+ ...=3b(p,1,i)YP

i 

where b() are binomial probabilities.  More generally 

(1)       M*YP=E[YP] 
 
where  M is an upper triangular matrix with M(i,j)=b(p,j,i)
and E[YP ] is the vector whose entries are the expected
number of classes of size i in the sample, given P.

Our objective is to approximate a solution for 

(2)                     M*Y=YS

where YS
i is the distribution of number of equivalence

classes of size i observed in the sample.

M is upper triangular hence invertable, unfortunately it is
rather large and the determinant is close to 0 so that
finding an approximate solution to equation 2 is nontrivial.
We will present an iterative fitting algorithm that gives an
approximation, YE, in the sense that d(M*YE,YS) is "small"
(relative to 3 YS

i**2) where d=3(Yi-Y
S
i)**2. 

V.  Assumptions.  

In order to bring the computational aspect of the problem
to a reasonable level, we make some mild assumptions,

some of which are specific to our data.  Our population
consists  of records drawn from the 1980 decennial census.
The population was initially described in [Zayatz 1991]
and was researched in connection with PUMS (Public Use
Microdata Samples) disclosure control; its class structure
is outlined in table 2.  We have already assumed Bernoulli
sampling to derive M.  We restrict the estimates of the
population class size distribution to descending
distributions s.t. 3(i*YP

i)=N.  One consequence of the
descending assumption in that no estimate which is close
to (in the sense above) the true population, can be close
in the tails.  A typical population will have a key, or a small
group of keys, that is significantly more frequent than all
others.  In our data there are no keys that form any class
of sizes 142 through 297, but there is a key that occurs 298
times.  The long tail is fairly representative of the
dis tribution in most populations.  Barring extremely
organized correlation, this is the key that exhibits the most
frequent values of all variables that make up the key (eg a
household that owns the home, with 2 nonhispanic white
adults and 2 nonhispanic white children etc).  No
descending distribution can fit such a tail, but our concern
is to estimate YP

1 at the head of the distribution.

We have truncated the M matrix to 100x100.  Bounding the
tail(s) of the matrix in general is a problem for which we
lack a solution.  For our known population d(M100*YP-
M300*YP )<1, where d is the sum of squared differences
between coordinates, and M 100 is 0 filled to match the size
of the larger matrix.  The short tail of the estimate tends to
further diminish the effect of truncation in the application.

VI.  Defining a neighborhood of Y

It is difficult, or at least computationally intensive, to
construct a grid of descending distributions s.t.
3(i*Yi)=N.  The descending assumption suggests trying
a gradient search.  That is, by examining nearby
distributions, determine which image under M best fits the
given sample and iterate.

Recall that Yi is the number of classes of size i.  If Y and Y'
differ only in that Y5-YN5=1 then the population
represented by Y has 5 more units than the population
represented by YN.  To preserve additivity and in some
sense cover the d-neighborhood of Y, we define an
(s,t,n)-neighbor of Y to be:
 

Yi(s,t,n)=Yi for iÖs,t

Ys(s,t,n)=Ys+
n
s



Yt(s,t,n)=Yt-  
n
t

That is, we will change n units of the population from
class s to class t.  The resulting distribution still preserves
additivity to N.  The motivation for a scale parameter is
computational:  we wish to achieve a coarse fit of the
image of the estimate to the given sample before fitting
with smaller increments.

VII  The fitting algorithm

The algorithm begins from a fixed point, the distribution
where every element of the population is unique.  In the

first iteration only the move of  uniques to 
n0

1
n0

2
doubletons is considered.  If that image is closer to the
sample, then it becomes the central point and it's
neighbors are considered in the next iteration.  A

neighbor, ,is  adopted only if it's image isY s t nEi ( , , )

closer than the image of  and it's image is closer toY
E

i

YS than any other neighbor.  If no neighbor yields an
improvement then the size of the increment, n, is
decreased.  The process is stopped when the increment
falls below n last.

More precisely:

Let  and  for jÖ1 and n0  be large.Y NE
1

0 = Yj
E 0 0=

Then define

                         Y Y x y nE E
i

i i+ =1 ( , , )

where (x,y,n i) is descending, positive and satisfies  
       

d M Y x y n Y d M Y s t n YE
i

S E
i

Si i( * ( , , ), ) ( * ( , , ), )≤

 ú (s,t,n i) with  descending, positive andY s t nEi ( , , )
   

d M Y x y n Y d M Y YE
i

S E Si i( * ( , , ), ) ( * , )<

else and     .  If ni<nlas t  thenY YE Ei i+ =1 n
n

i
i

+ =1 2
stop.

VII.  Results

Twenty five random samples of the parent population
were taken and their uniqueness distributions were
determined.  While not sufficient to draw any solid

conclusions about variance and bias, the sets of data have
enough variety  to work on the efficiency of the algorithm
and give an indication of the effectiveness of the estimate.
The algorithm described above was applied to each,  with
n0=2048 a n d  nlast=8.  Results seem indifferent to the
selection of n0, but I got a slightly better estimate of the
proportion of uniques with nlast=32 despite a weaker fit.
The results for n last=8 are displayed in tables 2 and 3, the
later focusing on convergence.  In general, successive
iterations take longer and longer to complete:  300
iterations complete in roughly 4 minutes, the 400 in about
10 minutes (On a Pentium II PC, using SAS). 

Table 2 show various estimates of the fraction of sample
uniques that are unique in the population.   The actual
fraction is given together with the estimate derived by
subsampling, the class based estimator in [Zayatz] and the
fitting estimate for the same 25 samples.  The table is
sorted by the relative difference of the fitting estimate and
the actual value.  There is a more or less even split of
underestimation and overestimation suggesting that
variance is more of a problem than bias.  In contrast the
subsampling estimate and the class based estimate are
very regular, but shows considerable bias.

 Table 3 is sorted by the number of iterations it took to
complete.  It shows some variation in fitting the sample

distribution and in estimating .  The fit of the firstY P
1

three coordinates is given in the table, as well as the total
distance from the image of the estimate to the sample.  As
a gross measure of the regularity of the sample we provide

its distance to the expected distribution .  TheM Y P*
most sobering result was that , and  were fitY S

1 Y S
2 Y S

3

more or less exactly for all of the 25 samples, regardless of

how good the estimate of was.  The estimatedY P
1

population fit the description offered by the sample, even
when that estimate was off. 

VIII  Conclusion and further research.

In order to apply this more generally we need M for simple
random sampling, bounds for the tail of M*Y, and a bound
on the error of the estimate itself.  The later has two
components, first the error associated with treating the
sample as an expected value and second the error in
approximation. 

Convergence might be improved in a number of ways.
One could smooth the sample so that it would be easier to
fit.  A different definition of d may find a more central
solution.  Relaxing the descending assumption would give



a better fit, including the tail.
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Table 1 Equivalence Classes in the Data Set

Class Frequency    Class    Frequency Class Frequency  Class Frequency
Size     Size Size  Size
   1    22026       21           18   41        6 61 3
   2      2954       22           12   42        5 62 2
   3      1090       23           23   43        2 64 4
   4        560       24           18   44        1 68 1
   5        354       25           15   45        4 69 2
   6        223       26           11   46        6 70 2
   7        173       27             9   47        3 72 2
   8        109       28             7   48        3 75 1
   9        106       29             7   49        1 76 1
 10          87       30             9   50        2 77 1
 11          64       31             8   51        2 78 1      
 12          53       32           12   52        3 79 1
 13          54       33             5   53        3 80 2
 14          48       34             7   54        1 86 1
 15          26       35             6   55        4 87 1
 16          37       36             8   56        1 88 2
 17          25       37             7   57        2   101 1
 18          14       38             3   58        2   103 1
 19          21       39             4   59        1   121 1
 20          16       40             3   60        4   141 1

  298 1

Table 2 Estimates of Proportion of Sample Uniques that are Population Uniques
(sort by relative bias of fit estimate)

                            Proportion
-------------------------------------------------------------------

            Distance  Distance                          Zayatz          Actual-Fit
Iterations from   from  Fit               Subsample         Class               ------

                Actual          Estimate Estimate       Estimate           ActualM( YE toYS YS toM(YP

388 217.7 2845.8  0.649 0.732 0.722 0.730 -0.127
207 107.5   601.1  0.662 0.736 0.730 0.731 -0.111
232 145.6   738.3  0.660 0.732 0.740 0.732 -0.109
222 189.1 7228.2  0.664 0.721 0.729 0.734 -0.086
191 128.2   423.9  0.657 0.701 0.729 0.734 -0.067
542 236.0 3726.6  0.644 0.685 0.751 0.739 -0.063
151 108.1 4885.7  0.649 0.690 0.733 0.741 -0.063
456 289.9 1438.7  0.663 0.702 0.739 0.734 -0.059
147   99.9 4620.2  0.661 0.698 0.729 0.731 -0.056
280 154.7 1602.8  0.656 0.689 0.733 0.729 -0.050
169 126.1 3220.9  0.658 0.686 0.731 0.726 -0.042
291 261.6 4214.8  0.656 0.673 0.722 0.726 -0.026
424 166.5 3785.4  0.656 0.650 0.743 0.740  0.008
221 190.3 1758.6 0.657 0.648 0.732 0.736 0.014
191 170.1   700.2 0.658 0.648 0.727 0.729 0.016
522 209.0   418.9 0.658 0.646 0.739 0.732 0.018
621 311.6   884.6 0.661 0.645 0.733 0.731 0.023
748 415.1 2025.7 0.654 0.638 0.741 0.736 0.025



188   61.5 1242.2 0.662 0.644 0.720 0.726 0.027
469 235.4 2562.2 0.652 0.632 0.735 0.733 0.030
215 185.7 1239.6 0.657 0.636 0.722 0.728 0.032
394 318.4 5778.4 0.655 0.628 0.731 0.731 0.041
164 101.2       10254.8 0.661 0.618 0.728 0.736 0.064
365 265.6       10395.6 0.660 0.597 0.719 0.726 0.095
697 338.3   864.2 0.663 0.554 0.740 0.733 0.164

Table 3 Fit and Estimation for 25 Samples from the Population
(sort on fit iterations)

              Distance          Estimate             Distance                                 The Absolute Fit
    from            of                from                                       in the first
             image of     population                sample                                      3 coordinates
              estimate        uniques            to average

                        to sample                      sample                -------------------------------------------------- 

Iterations                                                                     d (M(YE,YS) YE
1 d (YS,M(YP) M( YE

1&YS
1 M( YE

2&YS
2 M( YE

3&YS
3

147   99.9 23092 4620.2 0.1 0.2 1.1
151 108.1 23332 4885.7 0.0 0.3 0.7
164 101.2 21052               10254.8 0.2 0.5 0.5
169 126.1 22740 3220.9 0.1 0.4 0.2
188   61.5 21436 1242.2 0.1 0.1 0.2
191 170.1 12612   700.2 0.3 0.4 0.7
191 128.2 23508   423.9 0.1 0.5 0.7
207 107.5 24612   601.1 0.1 0.3 0.8
215 185.7 21172 1239.6 0.2 0.2 1.1
221 190.3 21564 1758.6 0.4 0.6 1.3
222 189.1 24500 7228.2 0.0 0.2 1.1
232 145.6 24580   738.3 0.2 0.5 0.2
280 154.7 22916 1602.8 0.2 0.6 0.1
291 261.6 22292 4214.8 0.3 0.7 1.2
365 265.6 19628               10395.6 0.3 0.4 2.5
388 217.7 24324 2845.8 0.2 0.3 2.0
394 318.4 21268 5778.4 0.1 0.2 1.0
424 166.5 21884 3785.4 0.3 0.4 2.8
456 289.9 23596 1438.7 0.4 1.1 0.2
469 235.4 21060 2562.2 0.5 0.7 3.5
522 209.0 21652   418.9 0.2 0.1 1.9
542 236.0 23092 3726.5 0.2 0.2 2.2
621 311.6 21668   884.6 0.0 0.1 1.9
697 338.3 18524   864.2 0.4 0.7 3.1
748 415.1 21460 2025.7 0.2 0.3 2.1

actual 22026


